Synergistic effects of oxidation and deformation on erythrocyte monovalent cation leak.

نویسندگان

  • P A Ney
  • M M Christopher
  • R P Hebbel
چکیده

The normal red blood cell (RBC) membrane is remarkable for its durability (eg, preservation of permeability barrier function) despite its need to remain deformable for the benefit of microvascular blood flow. Yet, it may be hypothesized that the membrane's tolerance of deformation might be compromised under certain pathologic conditions. We studied this by subjecting normal RBC in viscous suspending medium (20% dextran) to elliptical deformation induced by application of shear stress under physiologic conditions (290 mOsm/L, 37 degrees C, pH 7.40) in the presence of ouabain and furosemide. Measurement of resulting net passive K efflux ("K leak") demonstrated that shear-induced RBC deformation causes K leak in a dose-dependent fashion at shear stresses far below the hemolytic threshold, an effect shown to be due to deformation per se. To model the specific hypothesis that oxidatively perturbed RBC membranes would be abnormally susceptible to this potentially adverse effect of deformation, we treated normal RBC with the lipid peroxidant t-butylhydroperoxide. Under conditions inducing only minimal K leak due to either oxidation alone or deformation alone, deformation of peroxidant-pretreated RBC showed a markedly enhanced K leak (P less than .001). This highly synergistic oxidation-plus-deformation leak pathway is less active at low pH, is neither chloride-dependent nor calcium-dependent, and allows K efflux to be balanced by Na influx so there is no change in total monovalent cation content or cell density. Moreover, it is fully reversible since deformation-induced K leak terminates on cessation of shear stress (even for oxidant-treated RBC). Control experiments showed that our results are not explained simply by hemolysis, RBC vesiculation, or development of prelytic pores. We conclude that oxidation and deformation individually promote passive leak of monovalent cation through RBC membranes and that a markedly synergistic effect is exerted when the two stresses are combined. We hypothesize that these findings may help explain the abnormal monovalent cation leak stimulated by deoxygenation of sickle RBC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lipid hydroperoxides permit deformation-dependent leak of monovalent cation from erythrocytes.

Subtle peroxidative perturbation of normal red blood cells (RBC) using t-butylhydroperoxide creates a leak pathway for monovalent cations that is reversibly activated by cell deformation. To determine what factor promotes expression of this unique membrane defect, we have dissected "peroxidation" into components that can be evaluated separately by comparing K leak from suitably modified RBC dur...

متن کامل

Deformation of swollen erythrocytes provides a model of sickling-induced leak pathways, including a novel bromide-sensitive component.

Deoxygenation-induced red blood cell (RBC) sickling probably activates multiple cation leak pathways. In an attempt to model this, we examined the net passive K efflux ("K leak") from normal and sickle RBCs undergoing elliptical deformation in hypotonic media (200 mOsmol/L). This hypotonic deformation activates two deformation-dependent K leak pathways that are not detectable during the balance...

متن کامل

The monovalent cation "leak" transport in human erythrocytes: an electroneutral exchange process.

The mechanism of the "ground permeability" of the human erythrocyte membrane for K+ and Na+ was investigated with respect to a possible involvement of a previously unidentified specific transport pathway, because earlier studies showed that it cannot be explained on the basis of simple electrodiffusion. In particular, we analyzed and described the increase in the (ouabain+bumetanide+EGTA)-insen...

متن کامل

Band 3 Missense Mutations and Stomatocytosis: Insight into the Molecular Mechanism Responsible for Monovalent Cation Leak

Missense mutations in the erythroid band 3 protein (Anion Exchanger 1) have been associated with hereditary stomatocytosis. Features of cation leaky red cells combined with functional expression of the mutated protein led to the conclusion that the AE1 point mutations were responsible for Na(+) and K(+) leak through a conductive mechanism. A molecular mechanism explaining mutated AE1-linked sto...

متن کامل

Stomatin-deficient cryohydrocytosis results from mutations in SLC2A1: a novel form of GLUT1 deficiency syndrome.

The hereditary stomatocytoses are a series of dominantly inherited hemolytic anemias in which the permeability of the erythrocyte membrane to monovalent cations is pathologically increased. The causative mutations for some forms of hereditary stomatocytosis have been found in the transporter protein genes, RHAG and SLC4A1. Glucose transporter 1 (glut1) deficiency syndromes (glut1DSs) result fro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 75 5  شماره 

صفحات  -

تاریخ انتشار 1990